Marsv for Plan 9

Kenji Okamoto !, Yoshitatsu Suzuki 2

Coll. Integrated Arts € Sciences,
Osaka Prefecture Univ.,
Sakai, Osaka, 599-8531, Japan

1 Introduction

After GUI was spread, we have to deal with
huge sized programs written for investigation
of planetary data. There are many
commercial based utilities to make those
smaller such that GUI libraries or more
abstracted forms as language based IDL etc..
Those utilities are, unfortunately, suffered
from very often updates, which makes us
annoying sometime. We searched many
operating systems and found Plan 9[1] from
Bell Labs, which was newly designed from
scrach with the aim of replacing Unix in a
future, and has a very compact graphics
system. Plan 9 is now open to researchers
without fee. Based on this Plan 9 OS, we
expected to make a smaller sized and well
featured GUI program for our investigation
of Mars MOLA and image data, and got such
with total C source codes of about 10,300
lines. We call the program as marsv.

Marsv has no icon, and only has top menu
bar where some menus are shown as their
default values. Each menu item has a list of
other similer menu items behind it, which is
shown by mouse button3. Mouse button2
executes the item shown in the menu bar,
etc, which is similer to pulldown menu of X,
but not same. Marsv displays each window
as a stratified and tiled window. The size of
individual window can be changed by mouse
at anytime and anywhere as if it has window

lokamoto@granite.cias.osakafu-u.ac.jp
2now at Itochu Techno-Science Co., Tokyo,
yoshitatsu.suzukiQ@ctc-g.co.jp

manager like such in X.

Marsv reads many kinds of PDS formatted
planetary images such as Viking, Voyager,
Mars Global surveyer, Megellan etc. Mars
MOLA grid data also can be read, and are
laid over the corresponding Viking cube
image processed by ISIS[2] from USGS, and
we can make contour map on the image. We
can also measure interactively the elevation,
longitude and latitude of individual mouse
point in the image by ”Elevation” menu
behind the ” Contour” top menu. When
MOLA data alone are read, by specifying the
interesting area by mouse, those elevation
data are converted to brightness, and marsv
shows them as an image. Bottonl reads the
elevation, longitude and latitude of the point,
and button2 erases the display of those data.
Annotations can be attached by ”Pen” menu,
and ”Palette” menu changes the color of the
contour map etc.. Marsv can also save the
processed image to a postscript or Plan 9’s
PIC format file etc.

2 Implementation

Marsv is designed for concurrent parallel
programming using the thread(2) library of
Plan 9, which means it has full scalability.
Plan 9 has two different level graphic
libraries of draw(2) and control(2), where the
former is the lowest level graphic library, and
may correspond to X toolkit library judged
from its range of functionarity, and the latter
is a higher level library which deals with
some widget sets such as menu, button, text
input etc. We used somewhat revised version
of this control(2), because we needed 3
button functions for our menu bar.

When marsv is running, we have three
processes, two of which are for watching the
events (channel) from keyboard and mouse,
and another one contains threadmain()

function of marsv program and many other
threads called from the threadmain(). Those
three processes are forked by use of light
weight rfork(2) of Plan 9, and will not use so
much memory space by sharing many of the
memory. In our case marsv uses 828 Kb
memory area for the main process when it
starts. Those three processes uses preemptive
time sharing, then, can run simultaneously,
which enables rapid communication. It is the
reason why those three preemptive time
sharing processes are used for watching
keyboard and mouse.

The last process consists many tasks, each of
which is named as 'thread’, and will be called
and run when appropriate event message has
been detected or more precisely, any
appropriate channel has the message to the
thread. The message will be passed through
channel, which is a buffered or unbuffered
queue for a fixed-size message. Only one of
threads can run as an exclusive thread in the
process at a moment we are concerning. It is
the most simple case study of thread(2)
library of Plan 9. Only the channel is the
mean to communicate with each other for
processes or threads.

2.1 Thread programming and
marsv

Switching each thread is controled by sending
or receiving a message through channel (ctl
in the following example). Therefore, the ”for
loop” both in threadl() and thread2() will be
blocked untill this thread will receive msg. In
other words, those ”for loops” are not making
loop, but are blocked at the beginning line of
msg = recvp(). Let us consider some typical
sequences of processing here.

#include "wincomm.h"

/%

* struct WinComm {

Channel *ctl;

* K K K

};
*/
void
threadl(void *v) {
WinComm *v1,*v2;

vl = (WinComm*)v;

vi->ctl=chancreate(sizeof (char*), 0);

for(;;) {
msg=recvp(vi->ctl);
switch(msg) {

Case 1:
threadcreate(thread?2,
10%1024) ;
chanprint (v2->ctl, "exec
chanprint (v2->ctl, "exec
break;

Case 2:
chanprint (v2->ctl, "exec
chanprint (v2->ctl, "exec

break;

}
}

void thread2(void *v) {
WinComm *v2;

v2 = (WinComm*)v;

v2->ctl=chancreate(sizeof (char*), 0);

for(;;) {
msg = recvp(v2->ctl);
switch(msg) {
Case 3:
job3();
yield();
break;
Case 4:
jobd () ;
break;

Case
Case

Case
Case

(void*)v2,

DF
an;

4");
3");

2.1.1 Example 1

Threadl received ”exec Case 1” message from
its v1->ctl channel. Thread 1 starts to act
from making new thread2, and then, tries to
send a message of "exec Case 3” to that new
thread’s channel. This message wakes up the
thread2, and then threadl goes into sleep.
Thread2 processes the job3(), then meets
yield() command, which passes the thread
control to another thread. If no other thread
has been created, the thread which will be
waked up is threadl, and then, next
chanprint() function will be executed, which
again tosses the control back to thread2, and
job4() will be processed. Then, the control of
thread is hold on thread2, and processing will
be blocked untill the arrival of a new message
to v2->ctl channel.

However, if there is another thread3 created
in the same process, we don’t know which of
threadl or thread3 will be waked up, when
thread2 meets yield() command.

2.1.2 Example 2

Threadl received ”exec Case 2” message
from its v1->ctl channel. Threadl tries to
send "exec Case 4” message to thread2.
However, we don’t know whether the thread2
has been created or not. If it has been done,
the message will be received by the process.
If not, we will meet error of ”there is no
v2->ctl channel” etc, and the process will
meet serious problem.

If thread2 was created before, which indicates
the messages must have been sequncial from
“exec Case 3” to ”exec Case 4”, thread2 will
be waked up, and job4() will be done. After
that, thread2 has its thread control, which
means thread2 will be blocked until the
receivement of a new message to v2->ctl
channel. We have to pay careful attention
which thread we want to live longer. We

tried to design all the threads simpler as
possible as we can. However, we have to
accept some nested threads because of
complexity of the processing the planetary
data. The deepest nest level of marsv is
seven, and seen when saving the processed
image to a file. The sequence of this nesting
is from top level thread of threadmain to
imagerthread, canvasthread, viewerthread,
savethread, filebrowsethread and selectthread
from top to bottom.

2.2 Windows flexible to resize

From the programmer’s point of view, one of
the most difficult or cumbersome is coding to
make all the windows size-flexible, because
Plan 9 doesn’t have window manager, but
only has a function named resizecontrolset()
in control(2) library, the content of which
must be defined by user. All the other
windows also must be prepared for resizing
by the user.

In marsv, we created struct Basicwin, which
defines basic components of marsv windows,
and complises six subwindows, which are
layoutbtn, topmenubar, scrbtn, verscr, horscr
and main windows. Figure 1 shows those
components. The scrbtn means scroll button,
layoutbtn is for layout button, and horscr for
horizontal scrollbar, and verscr for vertical
scrollbar.

Resizing of all the windows must be done
harmoniously. In order to satisfy this
requirement, all the windows in marsv have a
tree structure of parent-child relationship,
and are made as child windows from a
parent, that is, subwindows. Any subwindow
has its rectangle area inside of its parent
window’s one. This is shown in Figure 2. All
the size of the reactangle are defined as
relative values of its parent.

Two kinds of mechanisms to make
subwindows in its parent were implemented,

b layoutbtn

topmenubar

— Verscr

Main

horcr

s7btn

== I

Figure 1: basic windows components

one is named fullsidesubwindow, and the
other is innersubwindow.

2.2.1 Fullsidesubwindow

The name of fullside comes from the way this
subwindow forms. When making fullside
window in the direction of down, it uses full
lateral width of its parent reactangle, and
some part of vertical side expressed as
percent. There are four directions, down, up,
right and left as shown in Figure 3. Upper
diagram of the figure shows how to make 3rd
child subwindows consists of five small
windows. First we make 2nd subwindow by
parting the parent window vertically into two
window using righr direction. The 2nd child
subwindow will then be parted horizontally
into 3rd child subwindows using down
direction.

subwin2 Win3
Win2
subwini
Wini !
parent Win

subwin2

parent Win —EWim i subwin

Win3

Figure 2: parent-child relations of windows

2.3 Connecting thread and
window

After a resize flexible window is given, we
have now to define the functionalities or
actions of the window. The most basics of
such include close and resize and draw the
window. In addition, we also need a method
to know when we need such action. These
actions are triggered usually by mouse or
keyboard actions from the computer user.
This communication will be done by a
message passing through channel in Plan 9
thread programming. Therefore, we need
some mechanism to hold above attributes in
a package to bring along with. For this
purpose, we implemented struct WinComm
and struct WinCommBase for marsv.
WinComm has parent-child relationship tree
structure as same as struct Win. It has, then,
pointer members to WinComm, such as par,
next, winconts. WinComm has its
WinCommBase, and four communication

_ when we need it. From a geometric point of
/3; win view, mount overlays a window to a part of
another window. From a functional point of
; view, mount connects a WinComm or
P anawin WinCommBase to another one, and makes
parent-child relationship each other, which is
maintained separately by struct WinCmChld
of a member of WinComm struct. This
mount or unmount function must be defined
elsewhare. Figure 4 shows how the Viewer
Form is mounted to the Main window of
Fullsidesubwin Imager Form, which is also mounted to the
Main window of threadmain’s subform, which
is also mounted to the Main window of
threadmain Form. In addition, struct
WinComm has, of course, three pointers to
common functions of close, resize and draw
== i T mentioned above, which must be defined
- elsewhare.
Most user actions will be done by pressing
ol Left buttons, or pointing a interesting object by
A . mouse, or inputting text data to a window
Up fla from user’s keyboard. We used the
pre-defined widget sets for this purpose,
Figure 3: make fullsidesubwindow which are provided by control(2) library of
Plan 9. The struct WinComm and
WinCommBase envelope those widget setts,
channels, ctl, data, event, winctl. The first and give some special meanings to them for
channel, ctl, is just a handle, and will be marsv GUI program. WinCommBase has a

linked to approapriate other channel in actual particular Controlset(2) for this purpose.
use. We use ctl channel only for multiplexed

receiving channel. Therefore, multiple struct

WinComm can be used for sending messages, 3 Results

however, only one of them can receive the

messages per thread without channel lockup. Figure 5 shows an example of contour map,
A window which contains some or all of and Figure 6 illustrates a marsv user
above basic components and and struct interface. We used making contour lines
WinComm is called ”"Form”. Tt is the most algorithm by Shono et. al.[3].

basic unit of marsv user interface. Above two

structs have a pointer to the function of

mount or unmount action, which enables a 4 References

”Form” to connect to another ”Form” which

has no original genetic relation. It enables us [1]Pike, R, et. al.(1995) "Plan 9 from Bell
to make some complicated user interface Labs”, 2nd ed. Plan 9 documents.

* base parent Win

Making child windows by fullside windaw

Tierwm

Child Win A

00% | U5 Child Wins Right ul

1004
v

threadmain Form threadmain Subform
I —— (——

: mount :
Main | ———— Main

\" Imagerthread Form
— T

mount
pr | Main

Main .

Yiewerthread Form

Main

Final
Window

Figure 4: mount other window to Main win-
dow

[2]USGS(1996) ”ISIS User’s Guide”
[3]Shono, S. et. al.(1988) ” Contour map by
BASIC II” (in Japanese), Kyoritsu Shuppan.

Newdin
Hirin QUBELoad

COTRSU>> Trom Osaka Prefecture University, 2003

1STS_QUIEInage Palette

Save Flevation pen

=

=

Newdin
Hirin QUBELoa

Figure 5: contour map

COTRSV>> Trom Osaka Prefecture University, 2002

1515 _QUIEInage Palette

ontourmap Save pen

Vilin Dravinage

Close

=

MOLALOad

Toad Paletie

Save

Close
Director:

7Just/okanoto/inage/.
File

Danny/

HOC.pic
Tyrrhena.gif

albapatera.ps
art.gi

bunnyBs..gif
bunnyss.gif
clen.pic
dna.pic

1252573.p5
1252575.p5
1516322_s1nu.cub
1643327_sinu.cub
1819227.p5
Tlover. Jpg

Figure 6: user interface

